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UNIT-II       Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson’s 1/3rd and 3/8 rules. Solution of Simultaneous Linear Algebraic 

Equations by Gauss’s Elimination, Gauss’s Jordan, Crout’s methods, Jacobi’s, Gauss-Seidal, and Relaxation method., 
 

Numerical Differentiation: 

Differentiate Newton’s forward interpolation formula with respect to  “p” we get following  

Newton’s forward difference formula:
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When x=x0 then p=x-x0/h = 0 hence these formulae reduce to
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Newton’s Backward difference formula:
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When x=x0 then p=x-x0/h = 0 hence these formulae reduce to 
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Numerical Differentiation 

Q.1 Find f‟(x) at x=0.1 given that   

 

0.1 0.2 0.3 0.4

0.9975 0.9900 0.9776 0.9604

:

:

x

f x
      [  RGPV. MAY 19] 

Q.2 Find the first and second derivatives of f(x)at  (i) x = 1.1  (ii) 1.6  

 

: 1 1.1 1.2 1.3 1.4 1.5 1.6

7.989 8.403 8.781 9.129 9.451 9.750 10.031:

x

f x
   (i) 3.952, -3.7417 (ii)2.7477, -0.71  , [ Dec. 2007, 11,June 2013] 

Q.3 Find the first and second derivatives of f(x)at   x = 1.1    

 

: 1 1.2 1.4 1.6 1.8 2.0

0 0.128 0.544 1.296 1.432 4:

x

f x
 Ans: -0.5030, -24.13  [June 2009, Feb. 2010, June 2014, Dec. 2015] 

Q.4 Find f‟(x) and f‟‟(x) at x=6 given that   

 

: 4.5 5 5.5 6 6.5 7 7.5

9.69 12.9 16.71 21.18 26.37 32.34 39.15:

x

f x
       [RGPV. Dec. 2014] 

Q.5 For the given table find  f’(x) at  x = 1.0 

 

: 1.0 1.1 1.2 1.3

0.841 0.891 0.932 0.963:

x

f x
   ANS: 0.5417   [[RGPV. JUNE 2007] 

Q.6 Find the first and second derivatives of f(x)at x =1.2 from the Following table  

 

: 1 2 3 4 5

0 1 5 6 8:

x

f x
    ANS: 15.167  [JUNE 2003] 

Q.7 Use Newton’s Divided difference formula , find f’(10) from the following data 

x 3 5 11 27 34 Ans: 233 

f(x) -13 23 899 17315 35606 [RGPV. Dec. 2010] 
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Q.8 Use Newton’s Divided difference formula , find f’(9) from the following data 

x 5 7 11 13 17 Ans: 261 

f(x) 150 392 1452 2366 5202 [RGPV. June 2011] 

Q.9 A slider in a machine moves along a fixed straight rod. Its distance x cm along the Rod is given below for various value 

of the time t seconds. Find  the velocity of the slider and its Acceleration when t =0.3 second. 

0 0.1 0.2 0.3 0.4 0.5 0.6

30.13 31.62 32.87 33.64 33.95 33.81 33.24
 Ans: Vel. = 5.34.cm/sec. Acc.=-45 .6 cm/sec.2[ Dec. 2004, 2013] 

Q.10 The following table gives the normal weights of babies during the first 12 months of life. Find the weight of baby at the age of 7 

months. 

Age in months 0 2 5 8 10 12   

Weights in lbs 7.5 10.25 15 16 18 21 Dec. 2014 [RGPV. June 2014] 

Q.11 A rod is rotating in a plane . The following table gives the angle  (radians) through which the rod has turned for various values     

            of the time t  seconds: 
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00 0.12 0.49 1.12 2.02 3.20 4.67

t

q
  Ans: 3.82 rad/sec. , 6.75 rad/sec2   [June2010, Dec.2012] 

Q.12 A rocket is launched from ground its velocity in first 80 seconds as follows. Find the acceleration at t=80 

              

 

 

0 10 20 30 40 50 60 70 80 

30 31.63 33.44 35.47 37.75 40.33 43.25 46.69 50.67. 

Time t

vel v
Ans: 0.38829 m/sec

2 

NUMERICAL INTEGRATION: Area Bounded between the limits xn and x0 is called integration b/w the limits xn and x0. 

(1)   Trapezoidal Rule:        2 ..
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(2) Simpson’s 1/3 Rule: [4(odd)+2(even)]      [divide the interval in multiple of 2] 

   

0

0 1 3 1 2 4 2[( ) 4( ... ) 2( ............. )]
3

nx

n n n

x

h
y dx y y y y y y y y           

(3) Simpson’s 3/8 Rule: [3(1,2,4,5,7……left multiple of 3)+ 2(3,6,9……….multiple of 3)]  

          [divide the interval in multiple of 3] 
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(4) Weddle Rule:[  1,5,1,6,1,5,1 ]      [divide the interval in multiple of 6] 

  

0
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Note: (1) n -ordinate means n= n-1 in h=(x-x0)/n (2) n- equidistance intervals means n=n-1 (3) n -equal parts means n=n
 

Q.13 Evaluate   

1

0
1

dx

x
  by using  Simpson’s 1/3 rule , n=5     [RGPV Dec. 2015]   

Q.14 Using Simpson’s 1/3 rule    

3

4

3

x dx


   by by taking seven ordinates. Compare with exact values.[Hint: n=6] [Nov. 2018]   

Q.15 Evaluate

 

6

2

0
1

dx

x
 by using  (i)Simpson’s 1/3 rule (ii) Weddle’s Rule [RGPV Dec. 2001, Dec. 2014 ,June 2015]   

Q.16 Evaluate

 

6

2

0
1

dx

x
 by using  Simpson’s 1/3 rule, h=1/4 [RGPV May 2019]     

Q.17 valuate

 

6

2

0
1

dx

x
 by using  Simpson’s 3/8 rule,  [RGPV May 2019]      
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Q.18 Evaluate
2

0.6

0

xe dx

  by Simpson’s  1/3 -rule, in seven ordinates.         [RGPV. June 2009,June 2014]  Ans: 0.5351 

Q.19 Integrate numerically 
/ 2

0

sin x dx




 

[(i) By Trapezoidal rule (ii) Simpson rule  using 11 ordinates. [Ans:0.9979, 1.00000358] 

[Hint :11 ordinates= n=10 , x1= π/20 ,y1= sin π/20 = 0.1564,find the values by calculator in radians, π=22/7][Dec.13]  

Q.20 Integrate numerically 
/ 2

0

cos xdx




 

[Hint : n=10 , x1= π/20 ,y1=  0.9938,find the values by calculator in radians, π=22/7] 

[Dec.13]  Ans: 1.1936 

Q.21 Evaluate  
0.7

1/2

0.5

xx e dx

  approximately by using a suitable formula.[RGPV. June 03, Dec. 06]  Ans: 0.08482711 

Q.22 Find an approximate value of the log 5e
by calculating to four decimal places by  Simpson’s  1/3 rule 

5

0
4 5

dx

x 
  

Dividing the range into 10 equal parts. [Hint: n=10]               [RGPV. June 04, Dec. 08]  Ans: 0.40252 

Q.23 Find the value of 
2

1

dx

x
 by Simpson’s 3/8 rule .Hence obtain approximation value of log 2e

 (i) h=05 (ii) h=0.25 

[RGPV. June 2006, June 2013]  Ans: 0.693125 

Q.24 The following table gives the velocity v  of a particle at time „t‟ . Find the distance moved by the particle in 12 second  

and also find acceleration at t=2 sec. 

 t(sec.) 0 2 4 6 8 10 12 Ans: s = 536 meters, a= 3 m/sec.
2
 

V(m/sec) 4 6 16 34 60 94 136 [RGPV. Feb. 2010] 

Q.25 A curve is drawn to pass through the points given by the following table . estimate the area bounded by the curve , x- 

axis and the lines x=1 , x=4. 

x 1 1.5 2 2.5 3 3.5 4 Ans: 7.7833 sq. unit 

y 2 2.4 2.7 2.8 3 2.6 2.1 Hint: x0=1, xn=4, [June 2007] 

Q.26 A river is 80 meters wide. The depth d(in feet) of the river at a distance x from the bank is given by the following table .  

Find approximately the area of cross-section of the river using Simpson’s 3/8 rule.. 

 x 0 10 20 30 40 50 60 70 80 Ans: 710 sq. Feet 

y 0 4 7 9 12 12 14 8 3  June 2010] 

 

Solution of Algebraic Simultaneous linear equations: 
 

Linear Algebraic Equations: Let system of linear equations is:  

a1x+b1y+c1z=d1 ,, a2x+b2y+c2z=d2, a3x+b3y+c3z=d3 

1. Direct Methods: 

(i) Gauss Elimination method ( Method of Pivoting) : In essence, we wish to eliminate unknowns from the equations by a 

sequence of algebraic steps. 

Let augmented matrix [A:b]= 

1 1 1 1

2 2 2 2

3 3 3 3

a b c d

a b c d

a b c d

 
 
 
 
 

 

 

Normalization (i) Let a1≠0. Then by 27 6 85 ,  6 15  2 72,    54  110 x y z x y z x y z        
 

and 3 3
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1 1
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a a

R R R R
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            ,we get   
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here a1 is called pivoting element. 

Reduction  : Now take b2‟  (≠0)  as the pivoting element , and use 3 3
32 3 3 2

2 2

' '
( )

' '

b b
R R R R

b b


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We get   

1 1 1 1

2 2 2

3 3

0 ' ' '

0 0 '' ''

a b c d

b c d

c d

 
 

  
 
 

 after solving this matrix by back substitution we get required results. 

Note:  This method fails if a1, b2‟ or c3‟‟ becomes zero. In such cases by inter changing the rows we can get the non zero pivots. 
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(ii) Gauss Jordan Method: It is a variation of Gauss elimination. The differences are: 

- When an unknown is eliminated from an equation, it is also eliminated from all other equations. 

- All rows are normalized by dividing them by their pivot element. 

Hence, the elimination step results in an identity matrix rather than a triangular matrix. Back substitution is, therefore, not 

necessary. 

All the techniques developed for Gauss elimination are still valid for Gauss-Jordan elimination. 

GAUSS-JORDAN ELIMINATION: 

1.  Get a 1 in upper left corner (by row ops 1 and/or 2) 

2.  Get 0's everywhere else in its column (by row op 3) 

3.  Mentally delete row 1 and column 1. What remains is a smaller submatrix.    

4.  Get 1 in upper left-hand corner of the sub matrix. 

5.  Get 0's everywhere else in its column for all rows in the matrix (not just the submatrix). 

6.  Mentally delete row 1 and column 1 of the submatrix, forming an even smaller submatrix. 

7.  Repeat 4, 5, 6 until you can go no further. 

8.  The matrix will now be in reduced row-echelon form (RREF), or just reduced form. 

6.  Re-write the system in natural form. 

7.  State the solution. 

A. If you get a row of all zeros, use row op 1 to make it the last row 

B.  If you get a row with all zeros to the left of the line, and a non-zero on the right,  STOP (no solution). 

 

(ii) LU Factorization Method(or Crout’s Method , or Choleskey’s Method)  

For a nonsingular matrix [A] on which one can successfully conduct the Naïve Gauss elimination forward elimination steps, one 

can always write it as   

Step –I  TAKE  [A]=[L][U]  

Where  :  [L]= Lower triangular matrix with unit diagonal  = 21

31 32

1 0 0

1 0

1

l

l l

 
 
 
  

   , [U] = Upper triangular matrix=

11 12 13

22 23

33

0

0 0

u u u

u u

u

 
 
 
  

 

Step –II  :  Take [L][Z]=[b]   

Step-III .   [U][X]=[Z] Where  Z=[z1, z2, z3] 

Step-IV :  Use back Substitution to find values of x, y, z 

 

ITRATIVE METHODS FOR SOLVING SIMULTANEOUS LINEAR EQUATION: 

(i) Jacobi Method :  Let system of equations is  

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

...................................................

                           ...                

    

.

                       ...              

..................

 

n n

n n

a x a x a x a x b

a x a x a x a x b

    
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1 1  2 2 3 3                         ...    

.

 

.........

 

.

         n n n nn n na x a x a x a x b    

 

Solve each equation for one variable:  

For first equation 11 11 12 1....... na a a a   , For Second equation 22 21 23 2....... na a a a   …… 

 
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nn
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The Iteration formulas are    
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.
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Gauss-Seidel Method: 

In most cases using the newest values on the right-hand side equations will provide better estimates of the next value.  If this is 

done, then we are using the Gauss-Seidel Method: 

The Iteration formulas are: 

 

 

( 1) ( ) ( ) ( )

( 1) (

1 1 12 2 13 3 1
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2 2 21 1 23 3 2
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 
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   

 

Note: 1. Why use Jacobi ? Ans: Because you can separate the n-equations into n  independent tasks; it is very well suited to 

computers with parallel processors. 

2.  If either method converges, Gauss-Seidel converges faster than Jacobi. 
 

Solution of Simultaneous Linear Algebraic Equations 
 

Q.27 Solve by Gauss elimination method 10 2 13,  3 10   14,  2 3 10 15x y z x y z x y z          

Q.28 Solve by Gauss elimination method 6 3 2 6, 6 4 3 0,20 15 12 0x y z x y z x y z          [Nov. 18] 

Q.29 Solve by Gauss elimination method 9  ,  2 -  3 4 13 ,3 4 5  40x y z x y z x y z          

Q.30 Apply factorization method to solve the equation 10x +y + 2z = 13 , 3x +10y + z = 14, 2x +3y + 10z = 15 

Q.31 Apply factorization method to solve the equation :3x +2y + 7z = 4  , 2x +3y + z = 5,  3x +4y + z = 7[ Dec.04, 07,12] Ans:7/8,9/8,-1/8 

Q.32 Solve by Gauss-Seidel method  the equations : 20x +y - 2z = 17 , 3x +20y - z = -18,  2x -3y + 20z = 25[Ans: 1.0004,-1.00025,0.9999] 

Q.33 Solve by Gauss-Seidel method  the equations 10x +2y  +z = 9  , 2x +20y -2 z = -44, 2x -3y + 20z = 25 

Q.34 Solve by Gauss-Seidel method  the equations 20x +y - 2z = 17  ,  3x +20y - z = -18,  -2x +3y +10z =22 [Dec.2003][Ans: 1,-2,3] 

Q.35 Solve by Gauss-Seidel method  the equations 27 6 85 , 6 15 2 72,  54 110 x y z x y z x y z        
 
 

[Ans :1.05564,1.3663,1.56199 ]   [Dec.02,06,11 ,June 08,11,13,17Nov. 18] 

Q.36 Solve by Jacobi’s method  the equation 10x +2y  +z = 9  , 2x +20y -2 z = -44,   2x -3y + 20z = 25 

Q.37 Solve by Jacobi’s method  the equation 10x +y + 2z = 13 , 3x +10y + z = 14,   2x +3y + 10z = 15 

Q.38 Solve by Crouts  method 3  ,  2 - 3 16 ,3 3x y z x y z x y z        
      [ May 2019]

 

Q.39 Apply crouts method to solve the equation 10x +y + z = 12 ,2x +10y + z = 13, 2x +2y + 10z = 14 [Ans:1,1,1]   [Dec. 13,16,june16]    

RELAXATION METHOD 
Solve the system of linear algebraic equation using relaxation Method 

10 2 3 205,  2 10 2 154  ,  2 10 120x y z x y z x y z            

Solution: The Residuals are  

205 10 2 3xR x y z    ……..(1) 

154 2 10 2yR x y z    …… .(2) 

120 2 10zR x y z    …….. (3) 

 Operation Table 

 Rx Ry Rz  

x -10 2 2 Diff eq.(1),(2),(3) w.r.t. “x” Respectively 

y 2 -10 1 Diff eq.(1),(2),(3) w.r.t. “y” Respectively 

z 3 2 -10 Diff eq.(1),(2),(3) w.r.t. “z” Respectively 

In this method we reduce(minimize ) residuals  by giving increments to the variables. The process stop when residuals become “0” or 

near to “0”. 
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Residuals Table 

Operations Values Rx Ry Rz 

Initially we put  x=y=z=0 205 154 120 

Since the max. 

residual is 205 in 

Rx , hence we take 

approximate value 

of  

1

Rx
x

a
  

205
20.5 20

10
x   




Put this value in 

eq.(1),(2),(3) keeping   y, 

z constant 

Since the residual i.e.205 , 

or eq. is  

205 10 2 3xR x y z   

 

(put the value of x=20, 

keeping y,z constant) 

205 10(20) 5   

Since the residual i.e.154 , 

or eq. is  

154 2 10 2yR x y z     

(put the value of x=20, 

keeping y,z 

154 2(20) 194   

Since the residual i.e.120 

, or eq. is  

120 2 10zR x y z     

(put the value of x=20, 

keeping y,z constant) 

120 2(20) 160   

Since the max. 

residual is 194 in 

Ry , hence we take 

approximate value 

of  

2

Ry
y

b
  

194
19.4 19

10
y   




Put this value in 

eq.(1),(2),(3) keeping   x, 

z constant 

Since new residual i.e.5 , 

or  New eq. becomes 

5 10 2 3xR x y z    ) 

(put the value of y, 

keeping x,z constant) 

5 2(19) 43   

(use new residual i.e.194 , 

or 

New eq. becomes 

194 2 10 2yR x y z   

 put the value of y, 

keeping x,z constant) 

194 10(19) 4   

(use new residual i.e.160 

, or 

New eq. becomes 

160 2 10zR x y z   

 put the value of y, 

keeping x,z constant) 

160 19 179   

Since the max. 

residual is 179 in 

Rz , hence we take 

approximate value 

of  

3

Rz
z

c
  

179
17.9 18

10
z   




Put this value in 

eq.(1),(2),(3) keeping   x, 

z constant 

(use new residual i.e.5 , or 

New eq. becomes

43 10 2 3xR x y z   

 

Put the value of z=18 , 

keeping   x, y constant 

43 3(18) 97   

use new residual i.e.5 , or 

New eq. becomes

4 2 10 2yR x y z    Put 

the value of z=18 , 

keeping   x, y constant 

4 2(18) 40   

use new residual i.e.179 , 

or 

New eq. becomes

179 2 10zR x y z   

Put the value of z=18 , 

keeping   x, y constant 

179 10(18) 1    

Since the max. 

residual is 97 in Rx 

, hence we take 

approximate value 

of  

1

Rx
x

a
  

97
9.7 10

10
x  




Put this value in 

eq.(1),(2),(3) keeping   y, 

z constant 

(use new residual i.e.97 , 

or 

New eq. becomes

97 10 2 3xR x y z   

Put the value of x=10 , 

keeping    y,z constant 

97 10(10) 3    

use new residual i.e.40 , or 

New eq. becomes

40 2 10 2yR x y z   

Put the value of x=10 , 

keeping    y,z constant 

40 2(10) 60   

use new residual i.e.-1 , 

or 

New eq. becomes

1 2 10zR x y z    

Put the value of x=10 , 

keeping    y,z constant 

1 2(10) 19    

Since the max. 

residual is 60 in Ry 

, hence we take 

approximate value 

of  

2

Ry
y

b
  

60
6

10
y  


  

Put this value in 

eq.(1),(2),(3) keeping   x, 

z constant 

(use new residual i.e.-3 , 

or 

New eq. becomes

3 10 2 3xR x y z    

Put the value of y=6 , 

keeping   x, z constant 

3 2(6) 9    

use new residual i.e.60 , or 

New eq. becomes

60 2 10 2yR x y z   

Put the value of y=6, 

keeping   x, z constant 

60 10(6) 0   

use new residual i.e. 19 , 

or 

New eq. becomes

19 2 10zR x y z   

Put the value of y=6, 

keeping   x, z constant 

19 6 25   

Since the max. 

residual is 25 in Rz 

, hence we take 

approximate value 

of  

3

Rz
z

c
  

25
2.5 2

10
z   




Put this value in 

eq.(1),(2),(3) keeping   x, 

y constant 

(use new residual i.e9 , or 

New eq. becomes

9 10 2 3xR x y z     

Put the value of z=2 , 

keeping   x, y constant 

9 3(2) 15   

use new residual i.e.0 , or 

New eq. becomes

0 2 10 2yR x y z    Put 

the value of z=2 , keeping   

x, y constant 

0 2(2) 4   

use new residual i.e. 25 , 

or 

New eq. becomes

25 2 10zR x y z   

Put the value of z=2 , 

keeping   x, y constant 

25 10(2) 5   

 

Similarly 
x=2 -5 8 9 

z=1 -2 10 -1 

y=1 0 0 0 

Since all the residuals are zero( or may be near equal to zero) hence we stop the process , also x

20 10 2 32 , 19 6 1 26 , 18 2 1 21x x y y z z                    

 

 


