

CORPORATE

INSTITUTE OF SCIENCE AND TECHNOLOGY, BHOPAL

Important Question/ Practice Set (Mathematics -III (BT-301)) Faculty Name : Akhilesh Jain

UNIT-II Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules. Solution of Simultaneous Linear Algebraic Equations by Gauss's Elimination, Gauss's Jordan, Crout's methods, Jacobi's, Gauss-Seidal, and Relaxation method.,

Numerical Differentiation:

Differentiate Newton's forward interpolation formula with respect to "p" we get following Newton's forward difference formula:

$$f'(x) = f'(a+ph) = \frac{1}{h} \left[\Delta f(a) + \frac{2p-1}{2!} \Delta^2 f(a) + \frac{3p^2 - 6p + 2}{3!} \Delta^3 f(a) + \frac{4p^3 - 18p^2 + 22p - 6}{4!} \Delta^4 f(a) + \dots \right]$$

$$f''(x) = f''(a+ph) = \frac{1}{h^2} \left[\Delta^2 f(a) + (p-1) \Delta^3 f(a) + \frac{6p^2 - 18p + 11}{12} \Delta^4 f(a) + \dots \right]$$

When $x=x_0$ then $p=x-x_0/h=0$ hence these formulae reduce to

$$f'(x) = f'(a) = \frac{1}{h} \left[\Delta f(a) - \frac{1}{2} \Delta^2 f(a) + \frac{1}{3} \Delta^3 f(a) - \frac{1}{4} \Delta^4 f(a) + \dots \right]$$

Newton's Backward difference formula:

$$f'(x) = f'(a+ph) = \frac{1}{h} \left[\nabla f(x_n) + \frac{2p+1}{2!} \nabla^2 f(x_n) + \frac{3p^2+6p+2}{6} \nabla^3 f(x_n) + \frac{4p^3-18p^2+22p-6}{4!} \nabla^4 f(x_n) + \dots \right]$$

$$f''(x) = f''(a+ph) = \frac{1}{h^2} \left[+\nabla^2 f(x_n) + (p+1) \nabla^3 f(x_n) + \frac{6p^2+18p+11}{12} \nabla^4 f(x_n) + \dots \right]$$

When $x=x_0$ then $p=x-x_0/h = 0$ hence these formulae reduce to

$$f'(x) = f'(a) = \frac{1}{h} \left[\nabla f(x_n) + \frac{1}{2} \nabla^2 f(x_n) + \frac{1}{3} \nabla^3 f(x_n) - \frac{1}{4} \nabla^4 f(x_n) + \dots \right]$$

Numerical Differentiation

Find f'(x) at x=0.1 given that Q.1 x:0.1 0.2 0.3 0.4[RGPV. MAY 19] f(x): 0.9975 0.9900 0.9776 0.9604Find the first and second derivatives of f(x) at (i) x = 1.1 (ii) 1.6 Q.2 1.1 1.3 1.4 x:1 1.2 1.5 1.6 (i) 3.952, -3.7417 (ii)2.7477, -0.71 , [Dec. 2007, 11,June 2013] f(x): 7.989 8.403 8.781 9.129 9.451 9.750 10.031 Find the first and second derivatives of $f(x)at \quad x = 1.1$ 0.3 x:1.2 1.4 1.6 1.8 1 2.0 **Ans:** -0.5030, -24.13 [June 2009, Feb. 2010, June 2014, Dec. 2015] 4 f(x): 0 0.128 0.544 1.296 1.432Q.4 Find f'(x) and f''(x) at x=6 given that 4.5 5 5.5 7.5 x:6 6.5 7 [RGPV. Dec. 2014] f(x): 9.69 12.9 16.71 21.18 26.37 32.34 39.15 For the given table find f'(x) at x = 1.0Q.5 x:1.0 1.1 1.2 1.3 ANS: 0.5417 [[RGPV. JUNE 2007] $f(x): 0.841 \ 0.891 \ 0.932 \ 0.963$ Find the first and second derivatives of f(x) at x = 1.2 from the Following table 0.6 1 2 3 4 5 x:ANS: 15.167 [JUNE 2003] $f(x): 0 \ 1 \ 5 \ 6 \ 8$ Q.7 Use Newton's Divided difference formula, find f'(10) from the following data 27 3 5 11 34 Ans: 233 х -13 23 899 17315 35606 f(x)[RGPV. Dec. 2010]

Practice Set : By Prof. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9630451272(1)

Q.8	Use Newton's Divided differen			-							
		7 11 392 1452 2	13 1 2366 52	7 02		Ans: 261 RGPV. June 2					
Q.9	A slider in a machine moves										
Q.,	of the time t seconds. Find t				-	-					
		0.3 0.4 0.5	0.6								
	Ans: Vel. = 5.34.cm/sec. Acc.=-45.6 cm/sec. ² [Dec. 2004, 2013] 30.13 31.62 32.87 33.64 33.95 33.81 33.24										
Q.10											
-	months.										
	Age in months	0 2	5	8	10	12					
	Weights in lbs	7.5 10.25	15	16	18	21	Dec. 2014				
Q.11											
	of the time t seconds: $\begin{array}{c} t & 0.0 \\ q & 0.00 \end{array}$	0.2 0.4 0.6 0	.8 1.0 1.2	2 Ans: 3.8	2 rad/sec. , 6	.75 rad/sec ²	[June2010, Dec.2012]				
Q.12	A rocket is launched from grou				d the secol	oration at t-80					
Q.12	T_{i}^{i} (4) 0 10 20	20 40 50	60 70	80							
	vel. (v) 30 31.63 33.44	30 40 50 35.47 37.75 40.33	43 25 46 6	9 50 67 ^A	Ans: 0.38	829 m/sec ²					
	$ver.(v) = 50^{-51.05} - 55.14$	55.47 57.75 40.55	43.23 40.0	50.07							
N	UMERICAL INTEGRATION	: Area Bounded betwee	n the limits x_n	and x_0 is call	alled integ	ration b/w the l	limits x_n and x_{0} .				
					-						
(1) Trapezoidal Rule: $\int_{r_0}^{x_n} y$	$ydx = \frac{n}{2}\left[\left(y_0 + y_n\right) + 2\right]$	$2(y_1 + y_2 + y_2)$	3 +	+	$\left[y_{n-1} \right] $					
(x ₀ 2) Simpson's 1/3 Rule: [4						val in multiple of 2]				
	$\int_{0}^{x_{n}} y dx = \frac{h}{3} \left[(y_{0} + y_{n}) + \right]$	$4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_1 + y_3 + \dots + y_{n-1})$	$y_2 + y_4 + \dots$	$+ y_{n-2})$]						
(.	3) Simpson's 3/8 Rule: [3)	(1,2,4,5,7left multi	iple of 3)+ 2(3	,6,9	-		val in multiple of 3]				
	$\int_{-\infty}^{x_n} y dx = \frac{3h}{8} \left[(y_0 + y_n) \right]$	$+3(y_1 + y_2 + y_4 + \dots + y_4)$	$y_{n-2} + y_{n-1}) + 2$	$2(y_3 + y_6 +$	+	$(y_{n-3})]$					
6	4) Weddle Rule: [1,5,1,6,	151]			[d	ivida tha intary	val in multiple of 6]				
	r						ai in multiple of of				
	$\int_{x_1}^{x_2} y dx = \frac{3h}{10} \left[(y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6) + (y_6 + 5y_7 + y_8 + 6y_9 + y_{10} + 5y_{11} + y_{12}) + \dots \right]$										
N	ote: (1) n -ordinate means $n = n$ -			ervals mear	ns <i>n=n-1</i> (3	3) <i>n</i> -equal part	ts means $n=n$				
Q	.13 Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by u	using Simpson's 1/3 rule	e, n=5			[RGPV	Dec. 2015]				
Q	.14 Using Simpson's 1/3 rul	e $\int_{-3}^{3} x^4 dx$ by by taki	ng seven ordir	nates. Com	pare with e	exact values.[H	lint: n=6] [Nov. 2018]				
Q	Q.15 Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using (i)Simpson's 1/3 rule (ii) Weddle's Rule [RGPV Dec. 2001, Dec. 2014, June 2015]										
Q	.16 Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by u	sing Simpson's 1/3 rule	e, h=1/4	[RGPV M	/lay 2019]						
Q	.17 valuate $\int_{0}^{6} \frac{dx}{1+x^2}$ by usi	ng Simpson's 3/8 rule,	[RGPV	May 2019	9]						

Q.18	Evaluate $\int_{0}^{0.6} e^{i\theta}$	$e^{-x^2}dx$	by Simpso	on's 1/3-1	rule, in sev	ven ordinat	es. [F	RGPV. Ju	ne 2009,Jı	ıne 2014]	Ans: 0.5351 s:0.9979, 1.00000358]
Q.19	Integrate num	nerically	$\int^{\pi/2} \sin x d$	<i>x</i> [(i) B	y Trapezo	idal rule (i	i) Simpson	n rule usir	ng 11 ordi n	nates. [Ans	s:0.9979, 1.00000358]
	[Hint :11 ordin	ates= n=	$=10, x_l = \pi/2$	$20, y_l = \sin \tau$	$\tau/20 = 0.156$	54, find the	values by ca	lculator in	radians, π=2	22/7][Dec.13	3]
Q.20	Integrate num	nerically	$\sqrt{\int_{1}^{\pi/2} \sqrt{\cos x}}$	<i>xdx</i> [Hint	: n=10 , x_1 =	$=\pi/20, y_{l}=$	0.9938,find	the values	by calculate	or in radians	s, π=22/7]
									[De	ec.13] Ans:	1.1936
Q.21	Evaluate $\int_{0.5}^{0.7} y$	$x^{1/2}e^{-x}dx$	_r approxir	nately by u	using a sui	table form	ula.[RGPV	7. June 03,	Dec. 06] A	ns: 0.08482	2711
Q.22	Find an appro										
	Dividing the range into 10 equal parts. [Hint: n=10] [RGPV. June 04, Dec. 08] Ans: 0.40252									s: 0.40252	
Q.23	Find the value	e of $\int_{1}^{2} \frac{d}{dt}$	$\frac{dx}{dx}$ by Simp	oson's 3/8	rule .Henc	e obtain a	pproximat	ion value o	of $\log_{e} 2$	(i) h=05 ((ii) h=0.25
Q.24	The following and also find				of a partic	le at time			6, June 20 moved by		0.693125 le in 12 second
	t(sec.)	0	2	4	6	8	10	12	Ans:	s = 536 m	eters, a= 3 m/sec. ²
	V(m/sec)	4	6	16	34	60	94	136		[RGPV.	Feb. 2010]
Q.25	A curve is dra axis and the l			gh the poir	nts given b	y the follo	wing table	. estimate	the area b	ounded by	the curve, x-
	x	1	1.5	2	2.5	3	3.5	4		Ans: 7.7	833 sq. unit
	У	2	2.4	2.7	2.8	3	2.6	2.1	Hin	t: $x_0 = 1, x_0$	_n =4, [June 2007]
Q.26	A river is 80 Find approxim			1	,				0	ven by the	following table .
	X	0	10	20	30	40	50	60	70	80	Ans: 710 sq. Feet
	у	0	4	7	9	12	12	14	8	3	June 2010]

Solution of Algebraic Simultaneous linear equations:

Linear Algebraic Equations: Let system of linear equations is:

 $a_1x+b_1y+c_1z=d_1$, $a_2x+b_2y+c_2z=d_2$, $a_3x+b_3y+c_3z=d_3$

1. Direct Methods:

(i) Gauss Elimination method (Method of Pivoting): In essence, we wish to eliminate unknowns from the equations by a sequence of algebraic steps.

Let augmented matrix [**A:b**]= $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$

Normalization (i) Let $a_1 \neq 0$. Then by 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110

and $R_{31}(\frac{-a_3}{a_1}) \Rightarrow R_3 = R_3 - \frac{a_3}{a_1}R_1$, we get $\approx \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ 0 & b_2 & c_2 & d_2 \\ 0 & b_3 & c_3 & d_3 \end{bmatrix}$ here all is called **pivoting element**.

Reduction : Now take b_2 ' ($\neq 0$) as the pivoting element, and use $R_{32}(\frac{-b_3}{b_2}) \Rightarrow R_3 = R_3 - \frac{b_3}{b_2}R_2$

We get $\approx \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ 0 & b_2 & c_2 & d_2 \\ 0 & 0 & c_3 & d_3 \end{bmatrix}$ after solving this matrix by back substitution we get required results.

Note: This method fails if a_1 , b_2 or c_3 becomes zero. In such cases by inter changing the rows we can get the non zero pivots.

(ii) Gauss Jordan Method: It is a variation of Gauss elimination. The differences are:

- When an unknown is eliminated from an equation, it is also eliminated from all other equations.

- All rows are normalized by dividing them by their pivot element.

Hence, the elimination step results in an identity matrix rather than a triangular matrix. Back substitution is, therefore, not necessary.

All the techniques developed for Gauss elimination are still valid for Gauss-Jordan elimination.

GAUSS-JORDAN ELIMINATION:

- 1. Get a 1 in upper left corner (by row ops 1 and/or 2)
- 2. Get 0's everywhere else in its column (by row op 3)
- 3. Mentally delete row 1 and column 1. What remains is a smaller submatrix.
- 4. Get 1 in upper left-hand corner of the sub matrix.
- 5. Get 0's everywhere else in its column for *all rows* in the matrix (not just the submatrix).
- 6. Mentally delete row 1 and column 1 of the submatrix, forming an even smaller submatrix.
- 7. Repeat 4, 5, 6 until you can go no further.
- 8. The matrix will now be in reduced row-echelon form (RREF), or just reduced form.
- 6. Re-write the system in natural form.
- 7. State the solution.
- A. If you get a row of all zeros, use row op 1 to make it the last row
- B. If you get a row with all zeros to the left of the line, and a non-zero on the right, STOP (no solution).

(ii) LU Factorization Method(or Crout's Method, or Choleskey's Method)

For a nonsingular matrix [A] on which one can successfully conduct the Naïve Gauss elimination forward elimination steps, one can always write it as

Step –I TAKE [A]=[L][U]

	-	0	~ I				<i>u</i> ₁₃
Where : [L]= Lower triangular matrix with unit diagonal =	l_{21}	1	0	, [U] = Upper triangular matrix=	0	u_{22}	<i>u</i> ₂₃
	l_{31}	l_{32}	1		0	0	<i>u</i> ₃₃

Step –II : Take [L][Z]=[b] **Step-III** . [U][X]=[Z] Where $Z=[z_1, z_2, z_3]$ **Step-IV** : Use back Substitution to find values of *x*, *y*, *z*

ITRATIVE METHODS FOR SOLVING SIMULTANEOUS LINEAR EQUATION:

(i) Jacobi Method : Let system of equations is

Solve each equation for one variable:

For first equation $|a_{11}| > |a_{11}| + |a_{12}| \dots + |a_{1n}|$, For Second equation $|a_{22}| > |a_{21}| + |a_{23}| \dots + |a_{2n}| \dots +$

$$x_n = \frac{1}{a_{nn}} \Big[b_n - (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n,n-1}x_{n-1}) \Big]$$

The Iteration formulas are

$$\begin{aligned} x_1^{(i+1)} &= \frac{1}{a_{11}} \Big[b_1 - \Big(a_{12} x_2^{(i)} + a_{13} x_3^{(i)} + \dots + a_{1n} x_n^{(i)} \Big) \Big] \\ x_2^{(i+1)} &= \frac{1}{a_{22}} \Big[b_2 - \Big(a_{21} x_1^{(i)} + a_{23} x_3^{(i)} + \dots + a_{2n} x_n^{(i)} \Big) \Big] \\ & \dots \\ x_n^{(i+1)} &= \frac{1}{a_{nn}} \Big[b_n - \Big(a_{n1} x_1^{(i)} + a_{n2} x_2^{(i)} + \dots + a_{n,n-1} x_{n-1}^{(i)} \Big) \Big] \end{aligned}$$

Gauss-Seidel Method:

In most cases using the newest values on the right-hand side equations will provide better estimates of the next value. If this is done, then we are using the Gauss-Seidel Method:

The Iteration formulas are:

$$\begin{aligned} x_1^{(i+1)} &= \frac{1}{a_{11}} \Big[b_1 - \Big(a_{12} x_2^{(i)} + a_{13} x_3^{(i)} + \dots + a_{1n} x_n^{(i)} \Big) \Big] \\ x_2^{(i+1)} &= \frac{1}{a_{22}} \Big[b_2 - \Big(a_{21} x_1^{(i+1)} + a_{23} x_3^{(i)} + \dots + a_{2n} x_n^{(i)} \Big) \Big] \\ &\dots \\ x_n^{(i+1)} &= \frac{1}{a_{nn}} \Big[b_n - \Big(a_{n1} x_1^{(i+1)} + a_{n2} x_2^{(i+1)} + \dots + a_{n,n-1} x_{n-1}^{(i)} \Big) \Big] \end{aligned}$$

Note: 1. Why use Jacobi ? Ans: Because you can separate the n-equations into n independent tasks; it is very well suited to computers with parallel processors.

2. If either method converges, Gauss-Seidel converges faster than Jacobi.

Solution of Simultaneous Linear Algebraic Equations

- Q.27 Solve by Gauss elimination method 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15
- Q.28 Solve by Gauss elimination method 6x + 3y + 2z = 6, 6x + 4y + 3z = 0, 20x + 15y + 12z = 0 [Nov. 18]
- Q.29 Solve by Gauss elimination method x + y + z = 9, 2x 3y + 4z = 13, 3x + 4y + 5z = 40
- **Q.30** Apply factorization method to solve the equation 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15
- Q.31 Apply factorization method to solve the equation :3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7[Dec.04, 07,12] Ans:7/8,9/8,-1/8
- Q.32 Solve by Gauss-Seidel method the equations: 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25[Ans: 1.0004,-1.00025,0.9999]
- Q.33 Solve by Gauss-Seidel method the equations 10x + 2y + z = 9, 2x + 20y 2z = -44, 2x 3y + 20z = 25
- Q.34 Solve by Gauss-Seidel method the equations 20x + y 2z = 17, 3x + 20y z = -18, -2x + 3y + 10z = 22 [Dec.2003][Ans: 1,-2,3]
- Q.35 Solve by Gauss-Seidel method the equations 27x+6y-z=85, 6x+15y+2z=72, x+y+54z=110

[Ans :1.05564,1.3663,1.56199] [Dec.02,06,11 ,June 08,11,13,17Nov. 18]

[May 2019]

Q.36 Solve by Jacobi's method the equation 10x + 2y + z = 9, 2x + 20y - 2z = -44, 2x - 3y + 20z = 25

- Q.37 Solve by Jacobi's method the equation 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15
- Q.38 Solve by Crouts method x + y + z = 3, 2x y + 3z = 16, 3x + y z = -3
- Q.39 Apply crouts method to solve the equation 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 [Ans:1,1,1] [Dec. 13,16,june16]

RELAXATION METHOD

Solve the system of linear algebraic equation using relaxation Method

$$10x - 2y - 3z = 205$$
, $-2x + 10y - 2z = 154$, $-2x - y + 10z = 120$

Solution: The Residuals are

$$R_x = 205 - 10x + 2y + 3z \dots (1)$$

$$R_y = 154 + 2x - 10y + 2z \dots (2)$$

$$R_z = 120 + 2x + y - 10z \dots (3)$$

Operation Table

	δRx	δRy	δRz	
δx	<mark>-10</mark>	2	2	Diff eq.(1),(2),(3) w.r.t. " x " Respectively
δy	2	<mark>-10</mark>	1	Diff eq.(1),(2),(3) w.r.t. "y" Respectively
δz	3	2	<mark>-10</mark>	Diff eq.(1),(2),(3) w.r.t. " z " Respectively

In this method we reduce(minimize) residuals by giving increments to the variables. The process stop when residuals become "0" or near to "0".

Operations	Values	Rx	Ry	Rz
Initially we put	x=y=z=0	<mark>205</mark>	154	120
Since the max. residual is 205 in Rx , hence we take approximate value	$\delta x = \frac{205}{ -10 } = 20.5 \approx 20$	Since the residual i.e.205, or eq. is $R_x = 205 - 10x + 2y + 3z$	Since the residual i.e.154, or eq. is $R_y = 154 + 2x - 10y + 2z$	Since the residual i.e.120 , or eq. is $R_z = 120 + 2x + y - 10z$
of $\delta x = \frac{Rx}{ a_1 }$	Put this value in eq.(1),(2),(3) keeping y , z constant	(put the value of $\delta x=20$, keeping <i>y</i> , <i>z</i> constant) 205-10(20) = 5	(put the value of $\delta x=20$, keeping y,z 154+2(20)=194	(put the value of $\delta x=20$, keeping <i>y</i> , <i>z</i> constant) 120+2(20)=160
Since the max. residual is 194 in Ry, hence we take approximate value of $\delta y = \frac{Ry}{ b_2 }$	$\delta y = \frac{194}{ -10 } = 19.4 \approx 19$ Put this value in eq.(1),(2),(3) keeping x, z constant	Since new residual i.e.5, or New eq. becomes $R_x = 5-10x+2y+3z$) (put the value of δy , keeping <i>x</i> , <i>z</i> constant) 5+2(19) = 43	(use new residual i.e. 194, or New eq. becomes $R_y = 194 + 2x - 10y + 2z$ put the value of δy , keeping <i>x</i> , <i>z</i> constant) 194 - 10(19) = 4	(use new residual i.e.160 , or New eq. becomes $R_z = 160 + 2x + y - 10$ put the value of δy , keeping x,z constant) 160 + 19 = 179
Since the max. residual is 179 in Rz, hence we take approximate value of $\delta z = \frac{Rz}{ c_3 }$	$\delta z = \frac{179}{ -10 } = 17.9 \approx 18$ Put this value in eq.(1),(2),(3) keeping x, z constant	(use new residual i.e.5, or New eq. becomes $R_x = 43-10x+2y+3z$ Put the value of $\delta z=18$, keeping x, y constant 43+3(18)=97	use new residual i.e.5, or New eq. becomes $R_y = 4 + 2x - 10y + 2z$ Put the value of $\delta z = 18$, keeping x, y constant 4 + 2(18) = 40	use new residual i.e. 179, or New eq. becomes $R_z = 179 + 2x + y - 10z$ Put the value of $\delta z = 18$, keeping x, y constant 179 - 10(18) = -1
Since the max. residual is 97 in Rx , hence we take approximate value of $\delta x = \frac{Rx}{ a_1 }$	$\delta x = \frac{97}{ -10 } = 9.7 \square 10$ Put this value in eq.(1),(2),(3) keeping y, z constant	(use new residual i.e.97, or New eq. becomes $R_x = 97 - 10x + 2y + 3z$ Put the value of $\delta x = 10$, keeping y,z constant 97 - 10(10) = -3	use new residual i.e.40, or New eq. becomes $R_y = 40 + 2x - 10y + 2z$ Put the value of $\delta x=10$, keeping y,z constant 40 + 2(10) = 60	use new residual i.e1, or New eq. becomes $R_z = -1 + 2x + y - 10z$ Put the value of $\delta x=10$, keeping y,z constant -1 + 2(10) = 19
Since the max. residual is 60 in Ry , hence we take approximate value of $\delta y = \frac{Ry}{ b_2 }$	$\delta y = \frac{60}{ -10 } = 6$ Put this value in eq.(1),(2),(3) keeping x, z constant	(use new residual i.e3, or New eq. becomes $R_x = -3 - 10x + 2y + 3z$ Put the value of $\delta y=6$, keeping x, z constant -3 + 2(6) = 9	use new residual i.e.60, or New eq. becomes $R_y = 60 + 2x - 10y + 2z$ Put the value of $\delta y=6$, keeping x, z constant 60 - 10(6) = 0	use new residual i.e. 19, or New eq. becomes $R_z = 19 + 2x + y - 10z$ Put the value of $\delta y=6$, keeping x, z constant 19+6=25
Since the max. residual is 25 in Rz , hence we take approximate value of $\delta z = \frac{Rz}{ c_3 }$	$\delta z = \frac{25}{ -10 } = 2.5 \approx 2$ Put this value in eq.(1),(2),(3) keeping x, y constant	(use new residual i.e9, or New eq. becomes $R_x = 9 - 10x + 2y + 3z$ Put the value of $\delta z = 2$, keeping x, y constant 9 + 3(2) = 15	use new residual i.e.0, or New eq. becomes $R_y = 0 + 2x - 10y + 2z$ Put the value of $\delta z=2$, keeping x, y constant 0+2(2)=4	use new residual i.e. 25, or New eq. becomes $R_z = 25 + 2x + y - 10z$ Put the value of $\delta z=2$, keeping x, y constant 25 - 10(2) = 5
	δx=2	-5	8	<mark>9</mark>

Since all the residuals are zero(or may be near equal to zero) hence we stop the process, also x $x = \sum \delta x = 20 + 10 + 2 = 32$, $y = \sum \delta y = 19 + 6 + 1 = 26$, $z = \sum \delta z = 18 + 2 + 1 = 21$